
Journal of Computational Physics 198 (2004) 580–616

www.elsevier.com/locate/jcp
Discretization errors in large eddy simulation:
on the suitability of centered and upwind-biased

compact difference schemes

Noma Park, Jung Yul Yoo, Haecheon Choi *

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Republic of Korea

Received 30 July 2003; accepted 22 January 2004

Available online 3 March 2004
Abstract

The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy

simulation (LES) is evaluated through the static and dynamic analyses. For the static error analysis, the power spectra

of the finite-differencing and aliasing errors are evaluated in the discrete Fourier space, and for the dynamic error

analysis LES of isotropic turbulence is performed with various dissipative and non-dissipative schemes. Results from

the static analysis give a misleading conclusion that both the aliasing and finite-differencing errors increase as the

numerical dissipation increases. The dynamic analysis, however, shows that the aliasing error decreases as the dissi-

pation increases and the finite-differencing error overweighs the aliasing error. It is also shown that there exists an

optimal upwind scheme of minimizing the total discretization error because the dissipative schemes decrease the aliasing

error but increase the finite-differencing error. In addition, a classical issue on the treatment of nonlinear term in the

Navier–Stokes equation is revisited to show that the skew-symmetric form minimizes both the finite-differencing and

aliasing errors. The findings from the dynamic analysis are confirmed by the physical space simulations of turbulent

channel flow at Re ¼ 23000 and flow over a circular cylinder at Re ¼ 3900.
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1. Introduction

Large eddy simulation (LES) has been regarded as a viable engineering tool for turbulent flow rather

than a research tool in accordance with rapidly enhanced computer architecture and mathematical mod-
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eling [1]. It has been especially true since the advent of advanced subgrid-scale (SGS) models with sound

physical basis, e.g. dynamic model [2,3] or SGS estimation model [4].

It is widely accepted that LES is more sensitive to the accuracy of spatial discretization scheme than
direct simulation, because LES is performed on grids that are just fine enough to resolve large flow

structures so that scales near the cut-off wavenumber are still energetic. Therefore, resolved scales should

not be artificially dissipated nor contaminated by the discretization errors in order to get accurate SGS

stresses. Although the Fourier spectral method may be the optimal choice of meeting this requirement,

most of challenging applications for LES are those in complex geometries where spectral methods are of

limited use. For such applications, more conventional methods such as finite difference or finite volume

methods have to be used.

The numerical discretization errors can be divided into two categories, or the finite-differencing error and
the aliasing error, which have different origins. The finite-differencing error comes from the numerical

approximation of spatial derivatives which can be best understood by the concept of modified wavenumber

(MWN) in the Fourier space. On the other hand, the aliasing error arises whenever nonlinear terms are

approximated in the discrete physical space as the point-wise product [5–10].

Some recent a priori and a posteriori tests [7–11] with finite difference schemes show that the discreti-

zation error may outweigh the contribution from the SGS force, and the aliasing error is the leading source

of errors for high-order schemes but the finite-differencing error becomes dominant for low-order schemes.

On the other hand, there has been a renewed interest on high-order upwind schemes such as weighted
essentially non-oscillatory (WENO) schemes [12,13], compact upwind schemes [14,15] and plenty of their

variants [16–18]. The need for developing high-order upwind schemes arises when the problems with strong

discontinuity are to be tackled such as the flow with shock/turbulence and shock/boundary layer interac-

tion. Besides, it is believed that upwind schemes have the ability of reducing the aliasing error due to

embedded numerical dissipation.

However, it became clear in recent years that dissipative schemes are not good candidates for use in

LES of turbulent flow. A representative example is LES of flow past a circular cylinder performed by

Beaudan and Moin [19] (denoted as BM94 hereinafter) at the Reynolds number of 3900, where fifth-
and seventh-order upwind schemes were used. Although these schemes have been successfully used for

DNS of transitional flow over a flat plate [20], the conclusion of BM94 is that the numerical dissipation

overwhelms the contribution from the SGS force. This conclusion was again confirmed by Mittal and

Moin [21].

Nevertheless, there have been plenty of researches that investigated the use of upwind schemes for LES

[22–28], where two different approaches were taken in using upwind schemes for LES. The first is to use

upwind schemes in the conventional LES formalism with the same SGS model used for non-dissipative

difference schemes. The second is to use the dissipative error of upwind schemes as the built-in SGS models
without introducing any explicit models, which is referred to as monotone integrated large-eddy simulation

(MILES) [23,27,28]. When one of these approaches is adopted, upwind schemes should satisfy one of the

following conditions [23]: (1) their numerical dissipation should be much lower than the physical SGS

dissipation (condition C1), or (2) their numerical dissipation should be able to produce the appropriate

amount of SGS dissipation (condition C2). The investigation of the condition C1 in the context of the

conventional LES formalism is the main concern of the present study. The concept of MILES and con-

dition C2 will be briefly addressed later in this paper.

Results from LES over a circular cylinder with QUICK scheme [22] and from LES/MILES of isotropic
turbulence [23] and fully developed channel flow [24] with shock-capturing schemes support the conclusion

of BM94. However, the conclusions made by Ladeinde et al. [25] and Meinke et al. [26] are quite different

from that of BM94. For example, Meinke et al. [26] reported, through the simulations of turbulent channel

flow and spatially evolving jet, that the results with AUSM [29] and sixth-order compact scheme combined

with compact filter show negligible difference.



582 N. Park et al. / Journal of Computational Physics 198 (2004) 580–616
From the survey of the previous studies of using upwind schemes for LES (and MILES), we draw the

following conclusions:

• There exists a rough consensus that the numerical dissipation strongly affects large structures on resolved
scales as well as unresolved turbulence.

• For all simulations, however, numerical and physical parameters such as grid resolution, numerical dis-

sipation and SGS dissipation are mixed up in a complex way such that it is difficult to assess the effect of

numerical dissipation in a systematic manner.

• The interpretation of the numerical results depends mainly on a posteriori tests. The numerical method

as well as the discretization error should be quantified for a systematic analysis.

In this regard, some useful methodologies for the definition of numerical errors and SGS forces have

been proposed [7–10]. In the present study, those methodologies are extended and applied to evaluate the
effect of numerical dissipation on the solution of resolved scales. From the present investigation, we hope to

answer the following questions:

(i) Is the conclusion by BM94 applicable to other schemes such as recently developed high-order upwind

schemes?

(ii) Does the numerical dissipation embedded in upwind schemes reduce the aliasing error?

(iii) Is it possible to estimate the effect of numerical dissipation on resolved scales?

(iv) Can we find an �optimal� upwind scheme that balances the aliasing and finite-differencing errors such

that the total error is minimized?
In addition, the investigation of the suitability of high-order accurate, centered compact difference

schemes for LES of flow in complex geometries is another objective of the present study. Especially, an

emphasis is taken on investigating conflicting conclusions made by [5–7,9] about the formulation of non-

linear term: one-dimensional analysis on the aliasing error and conservation property [5,6,9] suggests the

use of the skew-symmetric form, while a recent a priori test on the isotropic turbulence [7] advocates the

advective form.

The present paper is organized as follows. Section 2 introduces the finite difference schemes considered in

this study. In Section 3, analyses on the static numerical errors are presented. The power spectral densities
of the finite-differencing and aliasing errors and SGS forces are compared both in the continuous and

discrete Fourier spaces. Section 4 deals with a dynamic error analysis by LES of an isotropic, decaying

turbulence. In Section 5, the computational results of fully developed channel flow at Re ¼ 23000 and flow

past a circular cylinder at Re ¼ 3900 are presented. A brief summary and conclusions are given in Section 6.
2. Finite difference schemes

As a basic finite difference scheme, we consider one parameter family of compact upwind difference [14]

which is defined for any scalar f

ð1þ aÞ df
dx

����
i�1

þ 4
df
dx

����
i

þ ð1� aÞ df
dx

����
iþ1

¼ 1

h
ðf � 3� 2aÞfi�1 þ 4afi þ ð3� 2aÞfiþ1g; ð1Þ

where d=dx denotes a numerical approximation of the derivative, and h ¼ xiþ1 � xi is the grid spacing. Eq.

(1) reduces to the 4th-order compact scheme [30] (denoted as COM4 hereinafter) when a ¼ 0. For other

values of a, (1) represents 3rd-order accurate, compact upwind-biased schemes (CUD). As Zhong [14]

recommended 0.25 as a proper choice of a, we refer to (1) with a ¼ 0:25 as CUDZ. If a ¼ 1:5, (1) corre-
sponds to the compact upwind scheme proposed by Tolstykh and Lipavskii [15], which is referred to as

CUD3 following their notation. For convenience, non-compact, standard nth-order accurate central and
upwind schemes are denoted by CDn and UDn, respectively.
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Modified wavenumbers (MWNs) [30] for these compact schemes are plotted in Fig. 1, together with

those for spectral method (SP), UD5 and UD7. It is shown that the amount of dissipation characterized by

the imaginary part of MWN increases with increasing a. Therefore, a can be regarded as a measure of
numerical dissipation embedded in the difference scheme. Thus, one can roughly represent the spectral

characteristics of most upwind schemes with (1) by controlling the parameter a. For example, MWN of

UD7 is quite similar to that of CUDZ. On the other hand, the dispersion characteristics represented by the

real part of MWN also significantly changes with a. Nevertheless, this fact can be ignored because, as will

be shown in this paper, we investigate the effect of numerical dissipation in the range of 06 a6 0:25 where

the dispersion characteristics is nearly unchanged. Note also that throughout this paper, we define the

numerical dissipation as the dissipation caused solely by the dissipative error from the imaginary part of

MWN.
For upwind schemes (a 6¼ 0), the direction of flow or wave should be taken into account. In this paper,

the following local Lax–Friedrichs (LLF) flux-vector splitting (FVS) is considered

F�ðQÞ ¼ 1

2
FðQÞð � jKjQÞ; ð2Þ

where Q is the conservative variable vector, and jKj ¼ diagðjk1j; jk2j; . . .Þ is the local eigenvalue matrix of

flux vector FðQÞ. For flow over a circular cylinder (Section 5.3), we use Van Leer FVS [31] instead of LLF-

FVS to avoid oscillation near the stagnation point. For negative flux of (2), a scheme that has symmetric

coefficients to (1) about xi is used to get the spatial derivatives. It should be noted that we only consider the
finite difference schemes defined on the regular grid where all the variables and derivatives are defined on

the same node points. However, there is a class of upwind schemes that cannot be represented by (1), which

are defined on the collocated grid using the nonlinear interpolation at the cell faces. Those schemes and

their numerical dissipation are explained later in this paper.

For most upwind schemes, the concept of flux vector enforces the nonlinear term to be written in the

conservative, or divergence form. Moreover, in the presence of shock-like flow structures, the divergence

form is preferred for capturing the discontinuity without oscillation. For turbulent flow, however, this

constraint may affect the simulation result because the form of nonlinear term has a significant influence on
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Fig. 1. Modified wavenumbers for various finite difference schemes.
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the discretization error [7,9,10]. In cases of centered difference, on the other hand, we consider three an-

alytically but not numerically equivalent forms of nonlinear term:

Nd
i ¼

o quiuj
� �
oxj

; divergence or conservative form;

N a
i ¼ quj

oui
oxj

þ ui
oquj
oxj

; advective or convective form;

N s
i ¼

1

2
Nd

i

�
þ N a

i

�
; skew-symmetric form;

ð3Þ

where q is the density of fluid and ui is the velocity vector. Although the rotational form is another possible

formulation that is commonly adopted in the spectral method (see, for instance [7,9]), it is not considered

here because it is rarely used in the physical space simulation. For notational convenience, extensions -div,

-adv and -sk will be used to specify which form of nonlinear term is used.
3. Static error analysis

3.1. Finite-differencing error, aliasing error and SGS force

Let us consider an incompressible, isotropic turbulence in a cubic box X of side L. Such isotropic tur-

bulence obeys the following Navier–Stokes equation:

oui
ot

¼ � 1

q
Ni �

oP
oxi

þ m
o2ui

oxj oxj
; ð4Þ

where ui ¼ ðu1; u2; u3Þ is the solenoidal velocity field and Ni is the nonlinear term of any form in (3), P ¼ p=q
is a scalar functional determined by the continuity condition, and m is the kinematic viscosity.

First, the power spectral densities of static discretization errors and SGS forces are defined in the

continuous Fourier space (Section 3.1.1). Then, the result is recast into the discrete wavevector space to deal

with upwind schemes and various forms of the nonlinear term (Sections 3.1.2 and 3.1.3). Although im-

portant results in the continuous space were already described by Ghosal [8], we will briefly summarize

them for the completeness and consistency with the present approach on the discrete domain.

3.1.1. Discretization errors and SGS forces in the continuous wavevector space

The exact solution of (4) can be obtained in the wavevector space k ¼ ðk1; k2; k3Þ 2 R3, where
ki ¼ 2pni=L, nis are integers, and L is assumed to be infinity to make k a continuous wavevector. However,

we should define a �numerically exact� solution on a finite domain to make a fair comparison with actual

numerical solutions. We seek the most accurate, or ideal numerical solution of (4) that can be obtained in

the continuous but confined space B � ½�p=D; p=D�3 � ½�km; km�3, where D is the grid spacing and km is the

maximum resolvable wavenumber.

The most accurate numerical solution is obtained by applying the �exact� SGS stress to the filtered

Navier–Stokes equation with the filter width Df ¼ D. Therefore, the ideal solution is governed by the

following equation:

oûiðkÞ
ot

¼ �iknPimðkÞ ĜðkÞ
Z
B

Z
B
dðp

�
þ q� kÞûmðpÞûnðqÞ dp dqþ ŝmnðkÞ

�
� mk2ĜðkÞûiðkÞ; ð5Þ
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where cð�Þ denotes the Fourier coefficient, d is the Dirac delta function, smn is the SGS stress,

PijðkÞ ¼ dij � kikj=k2 is the projection tensor [32] onto the plane perpendicular to k, and ĜðkÞ is the spectral
transfer function of the filter kernel GðrÞ. To precisely separate the resolved scale from the SGS scale, a
sharp cut-off filter is used. For this filter, ĜðkÞ is defined as

ĜðkjkmÞ ¼ 1 if k 2 B ¼ ½�km; km�3;
0 otherwise:

�
ð6Þ

By definition, the exact SGS stress is

ŝijðkÞ ¼ ĜðkÞ
Z Z�

�
Z
B

Z
B

�
ûiðpÞûjðqÞdðpþ q� kÞ dp dq; ð7Þ

which corresponds to sij ¼ uiuj � uiuj in the physical space, and the bar denotes the cut-off filter.

Now, we consider an actual numerical solution of (4) with finite difference schemes in the continuous
physical space. By introducing MWNs and aliasing modes, (5) is expressed as

oûiðkÞ
ot

¼ �ik0nP
0
imðk; k0Þ ĜðkÞ

X
a2K

Z
B

Z
B
dðp

"
þ q� k� aÞûmðpÞûnðqÞ dp dqþ ŝmnðkÞ

#
� mk00ĜðkÞûiðkÞ; ð8Þ

where k0 and k00 denote MWNs of first and second derivatives, respectively, and K is defined as

K ¼ ð2pkm; 2qkm; 2rkmÞ, where p; q; r may have 0, �1. Note that the numerical biased projection tensor

P 0
ijðk; k

0Þ ¼ dij � k0ikj=ðk0lklÞ [7] is introduced in (8) instead of Pijðk0Þ [8] to insure divergence-free velocity field

at machine precision even with the finite difference schemes.

The static discretization error excluding time-stepping error is defined as the difference between the right-
hand sides of (5) and (8). As stated in Section 1, this error is decomposed into the finite-differencing (FD)

and aliasing errors

EFD
i ðkÞ ¼ iĜðkÞ k0nP

0
imðk; k

0Þ
n

� knPimðkÞ
o Z Z

dðp
�

þ q� kÞûmðpÞûnðqÞ dp dq

�
þ mðk00 � k2ÞĜðkÞûiðkÞ; ð9Þ
Ealias
i ðkÞ ¼ ik0nP

0
imðk; k0ÞĜðkÞ

X
a2K0

Z
B

Z
B
dðpþ q� k� aÞûmðpÞûnðqÞ dp dq; ð10Þ

where K0 ¼ K� f0; 0; 0g. The statistics of these errors are characterized by their power spectral density

(PSD). Using the �joint-normal approximation� [32] (see [8] for more details), PSD of the finite-differencing

error is obtained as

EFDðkÞ � 4pk2 lim
L!1

8p3

L3
EFD
i ðkÞEFD�

i ðkÞ
� �

X

¼ 8pk2Dimnðk; k0ÞD�
ipqðk; k0Þ

Z
U�

mpðrÞU�
nqðk

�
� rÞ drþ 4pk2m2 k00

�� � k2
��2UiiðkÞ

	
X

; ð11Þ

where f gX denotes the spherical average at radius k ¼ jkj, superscript * denotes the complex conjugate, and
Dimnðk; k0Þ � k0nP

0
imðk; k0Þ � knPimðkÞ. UijðkÞ is the velocity correlation tensor of the isotropic turbulence given

by
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UijðkÞ ¼
EðkÞ
4pk2

ðk2dij � kikjÞ; ð12Þ

where EðkÞ is the prescribed three-dimensional energy spectrum. Note that PSD of the finite-differencing

error can be obtained from MWN of the finite difference scheme and the prescribed energy spectrum.

PSD of the aliasing error can be computed similarly as

EaliasðkÞ ¼ 8pk2
X
a2K0

knP 0
imðk; k

0ÞðkqPipðk; k0ÞÞ�
Z
B

Z
B
U�

mpðrÞU�
nqðsÞdðk

�
þ a� r� sÞ dr ds

	
X

: ð13Þ

However, PSD of the aliasing error cannot be computed analytically because (13) contains an integration

inside a box which breaks the spherical symmetry. Instead, lower and upper bounds are defined in the

domains S1 and S2, respectively, where S1 denotes the largest sphere in B and S2 denotes the smallest

sphere that contains B.
From (7), PSD of the SGS force is defined as follows:

IðkÞ ¼ 4pk2 lim
L!1

8p2

L3
F >
i ðkÞF >�

i ðkÞ
� �

X
; ð14Þ
F >
i ðkÞ ¼ �iknPimðkÞŝmnðkÞ ¼ �iknPimðkÞĜðkÞ

Z Z�
�
Z
B

Z
B

�
ûmðpÞûnðqÞdðpþ q� kÞ dp dq: ð15Þ

As (15) also contains the integration over B, the evaluation of (15) should be replaced by integrations over

S1 (upper bound) and S2 (lower bound), respectively.

3.1.2. Discrete evaluation of numerical errors

We showed in Section 3.1.1 that PSDs of the discretization errors and SGS force can be evaluated

analytically from (11), (13) and (14) once the energy spectrum and the MWN of the scheme are given.

However, it is true only for central difference schemes. As upwind schemes require the information on the
flow direction at each point, we need a complete velocity field rather than its spectrum. Moreover,

the velocity field should be defined on the discrete wavevector space, as it is nearly impossible to prescribe

the velocity field of the isotropic turbulence in the continuous wavevector space.

Therefore, the discretization errors described in Section 3.1.1 are defined in the discrete wavevector

space. For this purpose, it is convenient to consider these errors first in the continuous physical space and

then convert them to the discrete Fourier space.

Let us define eFDi ðxÞ as the finite-differencing error (9) in the physical space. It can be written as

eFDi ðxÞ ¼ P


�
� o

oxj
þ d
dxj

�
uiuj
�

þ Pdij þ sij
��

þ m
o2

oxj oxj



� d2

dxj dxj

�
ui; ð16Þ

where P denotes the projection onto the solenoidal field and the commutation between the filter and the

derivative is assumed. Note that eFDi ðxÞ is defined in the continuous x 2 R3 although it does not have

smaller scale than D.
As described in Section 2, FVS is applied to nonlinear term. For example, the derivative of flux vector

FðuÞ is given by

dFðuÞ
dx

¼ dþFþðuÞ
dx

þ d�F�ðuÞ
dx

; ð17Þ
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where the operators dþ=dx and d�=dx denote upwind and downwind schemes, respectively, which are

symmetric to each other. Using MWN, (17) is converted to the Fourier space as

ddFðuÞ
dx

¼ ik0x
dFþðuÞ þ ik0�x

dF�ðuÞ; ð18Þ

where k0�x is the complex conjugate of MWN in the x-direction. Using (18), the projection of (16) onto the

discrete Fourier domain BN � ½�N=2;N=2�3 ¼ ½�kM ; kM �3 takes the form of

EFD
i ðkjkMÞ ¼ ĜðkjkMÞ P 0

imðk; k
0ÞN̂ 0

mðk
0Þ

nh
� PimðkÞN̂mðkÞ

o
þ iŝmnðkÞ k0nP

0
imðk; k

0Þ
n

� knPimðkÞ
o
þ mðk00 � k2ÞûiðkÞ

i
; ð19Þ

and

N̂mðkÞ ¼ ikn
X
pþq¼k

ûmðpÞûnðqÞ; ð20Þ
N̂ 0
mðk0Þ ¼ ik0ndCþ

mn þ ik0�n dC�
mn ; C�

mn ¼
1

2
uMm
�

� uMm
�� ���uMn ; ð21Þ

where kM corresponds to the smallest scale D. In (21), uMm is the inverse discrete Fourier transform of ûmðkÞ
with modes up to M ¼ ð3=2ÞN in each direction, i.e.,

uMm ¼ I3MumðxÞ ¼
X
k

~umðkÞeik�x; ð22Þ

where

~umðkÞ ¼
ûmðkÞ if k 2 BN ;
0 otherwise

�
ð23Þ

and

x ¼ xiei ¼
niL
M

ei; ni ¼ 0; . . . ;M � 1;
k ¼ kiei ¼
2pli
L

ei; li ¼ �M=2; . . . ;M=2� 1

for orthonormal basis (e1; e2; e3) and i ¼ 1; 2; 3. Without loss of generality, we assume L ¼ 2p as we deal

with a discrete and finite domain both in the physical and Fourier spaces. Eqs. (22) and (23) are the so

called 3/2-rule, or zero padding technique [33], which are introduced to remove the aliasing error. In the

evaluation of (19), the error from viscous term is neglected because it is very small for most flows [8]. The
discrete evaluation of SGS stress term in (19) will be given in Section 3.1.3.

Although the discrete evaluation is an inevitable choice to deal with upwind schemes, it has some ad-

vantages over continuous one. One of them is that the aliasing error can be evaluated efficiently and un-

iquely, which is simply computed by the difference between dealiased and aliased numerical evaluations of

nonlinear term

Ealias
i ðkjkMÞ ¼ �ĜðkÞP 0

imðk;k
0Þ N̂ 0DA

m ðk0Þ
n

� N̂ 0alias
m ðk0Þ

o
; ð24Þ



588 N. Park et al. / Journal of Computational Physics 198 (2004) 580–616
where N̂ 0DA
m ðk0Þ denotes the dealiased nonlinear term as defined in (21) and N̂ 0alias

m ðk0Þ is the aliased one that

can be also obtained from (21) by simply replacing M with N . The computation of (24) is much easier than

that of (10), in that (10) requires the evaluation of three (1-D, 2-D and 3-D) different aliasing modes [8].
Another advantage of the discrete approach is that different forms of nonlinear term can be easily

computed for the case of centered difference schemes. For example, the finite-differencing and aliasing

errors for the advective and skew-symmetric forms (see (3)) are obtained by the modification of N̂ 0
mðk0Þ (and

N̂mðkÞ) in (19) and (24) such as

N̂ 0
mðk0Þa ¼ i

X
pþq¼k

p0n
�

þ q0n
�
ûmðpÞûnðqÞ; ð25Þ
N̂ 0
mðk

0Þs ¼ 1

2
ik0n
X
pþq¼k

ûmðpÞûnðqÞ þ
1

2
i
X
pþq¼k

p0n
�

þ q0n
�
ûmðpÞûnðqÞ: ð26Þ

In the continuous approach [8], however, only the divergence form is considered possibly due to some

analytical complexity in dealing with other forms of nonlinear term. Note that the discretization errors, (19)
and (24), are derived directly from the prescribed velocity field without resort to the joint-normal

hypothesis.
3.1.3. Velocity field and SGS force

Two models are considered for the energy spectrum in the present study: the Von Karman spectrum Ehigh

and the conventional Gaussian model Elow of the isotropic turbulence, which are given, respectively, as

EhighðkÞ ¼
a k=kp
� �4

bþ k=kp
� �2n o17=6

; ð27Þ
ElowðkÞ ¼ c k=kp
� �4

exp
n
� 2 k=kp
� �2o

; ð28Þ

where a ¼ 2:683, b ¼ 0:417 and c ¼ 7:389. The spectra (Ehigh and Elow) representing high and low Reynolds

number flows, respectively, are normalized such that the maximum energy is 1 at k ¼ kp. Since we are more

interested in the high Reynolds number flow, all the results in this section are from the Von Karman
spectrum unless otherwise specified.

Although the �phase jittering� technique [7] is often used to generate a realistic random velocity field, the

non-Gaussian nature of real turbulent flow [34] is not produced by such a synthetic field. As an alternative,

an iterative method proposed by Carati et al. [35] is adopted to generate a field that satisfies the continuity,

prescribed energy spectra and realistic velocity-derivative skewness close to )0.5. Fig. 2 shows prescribed

and recovered 3-D energy spectra for the Von Karman and Gaussian models. It is shown that the pre-

scribed spectra are well recovered by the present method.

For the purpose of validation, we compare the present results on the discrete wavevector space with
those from Ghosal [8] for the case of kM ¼ 8, where the Von Karman model (27) with kp ¼ 1 is used. Unlike

[8], the same values kM and kp, however, cannot be used for the present study since we deal with only integer

wavenumbers: kp ¼ 1 and integer wavenumbers up to kM ¼ 8 are insufficient even for representing the Von

Karman spectrum. In order to make an appropriate comparison with the results on the continuous space,

we set kp ¼ 4 and kM ¼ 32. Finally, the computed discretization error and SGS force are rescaled such that

the results on 32 equi-spaced spherical shells can be a good approximation of those in the continuous three-

dimensional wavenumber k (06 k6 8). Thus, integer-valued wavenumbers in this subsection do not cor-
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respond to discrete grid points in the physical space. Instead, they are interpreted as the discrete approx-

imations of discretization errors and SGS force that were originally defined in the continuous space.

Now, let us consider the discrete evaluation of SGS stress, (7). However, as there is no mode outside BN ,

it cannot be directly approximated with the discrete velocity field. Therefore, we consider a new velocity

field (u2Nj ) generated from twice the grid points in each direction. Then, SGS stress is approximated by

sij ¼ uiuj � uiuj � u2Ni u2Nj � uNi u
N
j ; ð29Þ

where uNj is the original velocity field in BN . A justification for this approximation is that the nonlinear

dynamics of the resolved modes with wavenumbers k < kc ¼ kM are governed almost exclusively by their

interactions with a limited range of modes with wavenumbers not exceeding 2kc, and much smaller scales

have a negligible effect on the resolved ones [4]. Eq. (29) is represented in the Fourier space as

ŝijðkÞ ¼ ĜðkjkMÞ
Xp;q;k6 2kM

pþq¼k

û2Ni ðpÞû2Nj ðqÞ
 

�
Xp;q;k6 kM

pþq¼k

ûNi ðpÞûNj ðqÞ
!
: ð30Þ

In practice, we first generate u2Nj on ð2NÞ3 grids and obtain uNj by filtering u2Nj at kM to insure that u2Nj has the

same spectral information with uNj up to kM . Finally, PSD of the SGS force is obtained by (14) and (15).

Fig. 3 shows PSDs of SGS forces (14) computed from the continuous wavevector approach (Eq. (7) and

[8]) and the present discrete evaluation (Eq. (30)). Also shown is the spectrum of total nonlinear term, which

can be easily obtained by replacing Dimnðk; k0Þ in (11) with �knPimðkÞ. It is shown that the discrete true SGS
force lies between the lower and upper bounds of the SGS force computed from the continuous evaluation

except the high wavenumber region near the cut-off. Therefore, we can regard this discrete SGS force as the

reference �true SGS force�.
Although the main concern of this paper is on the discretization error, the modelling error from the

empirical SGS models should be investigated. This issue is addressed in Appendix A.
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3.2. Analysis on discretization errors

Figs. 4(a) and (b) show PSDs of the finite-differencing errors of UD1, CD2-div, UD5, CD6-div, CUD3,

CUDZ, and COM4-div evaluated by the discrete method described in Section 3.1.2, together with PSD of

the SGS force. Also shown in Fig. 4 are PSDs by the continuous evaluation (see Section 3.1.1 and [8]) for

CD2-div, CD6-div and COM4-div for the validation of the present discrete evaluation. The comparison of

the spectra between the discrete and continuous evaluations indicates that the finite-differencing errors are

accurately produced by the present discrete approach.

It is shown in Fig. 4 that in general high-order schemes have lower finite-differencing errors and upwind
schemes have larger errors than corresponding central difference schemes. Especially, errors from UD1 are

much larger than the SGS force, demonstrating that such a scheme should not be used in LES at all. The

comparison between compact and non-compact difference schemes demonstrates the superiority of com-
Fig. 4. Finite-differencing errors for various schemes as compared with the SGS force: (a) UD1, CD2-div, UD5 and CD6-div; (b)

CUD3, CUDZ and COM4-div.



Fig. 5. Aliasing errors for various schemes as compared with the SGS force: (a) UD1, CD2-div, UD5 and CD6-div; (b) CUD3,

CUDZ, COM4-div and COM4-sk.
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pact schemes over non-compact ones of comparable order of accuracy. This result is consistent with the

modified wavenumber analysis.

Fig. 5(a) shows PSDs of the aliasing errors of UD1, CD2-div, UD5 and CD6-div both in log and real
scales. Also shown in Fig. 5(b) are those of CUD3, CUDZ, COM4-div and COM4-sk. Unlike the finite-

differencing errors, the aliasing errors are much larger than the SGS force regardless of the discretization

schemes, indicating that the aliasing errors are the dominant source of discretization error even for low-

order schemes.

For central differences, it is manifest that higher-order schemes have higher aliasing errors [8]. However,

for upwind schemes, the aliasing error is shown to be nearly proportional to the imaginary part of MWN:

The more dissipative is the scheme, the larger aliasing error is obtained, contrary to the common belief on

upwind schemes. The aliasing errors of UD1 and CUD3 are larger than those of UD5 and CUDZ, re-
spectively. Moreover, aliasing errors of upwind schemes are larger than those of comparable central

schemes. This result seems to give negative answers to the questions (ii) and (iv) described in Section 1,
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because both the finite-differencing and aliasing errors increase as the numerical dissipation increases (see

Appendix B for one-dimensional analysis). However, this conclusion is quite questionable because it is

purely drawn from the static error analysis. Therefore, we do not draw any conclusion on this issue until the

dynamic error analysis is conducted in Section 4.

Fig. 6 shows the aliasing errors of COM4 from different forms of nonlinear term. Also plotted in this

figure are the lower and upper bounds of aliasing error from COM4-div evaluated by the continuous

approach. It is shown that the skew-symmetric form exhibits the lowest aliasing error. Although this fact
was already shown in [5,6,9] with one-dimensional analysis, Fig. 6 presents the first result with the Navier–

Stokes equation. It is interesting to note that the advective form shows larger errors at low wavenumbers

than the divergence form. It should be noted that even the lowest aliasing error produced by COM4-sk is

still much larger than the SGS force.

On the other hand, for the low Reynolds number spectrum model (28), the SGS force as well as the

aliasing error goes to machine zero at all wavenumbers, indicating that all the energetic wavenumbers are

resolved with the given grid. For this case, LES becomes DNS. However, even for this case, the finite-

differencing errors still exist and their PSDs are compared to that of total nonlinear term in Fig. 7. From
this figure, the finite-differencing error of COM4-div is much smaller than total nonlinear term, and those

from CUDZ and CUD3 are not big, which illustrates the success of upwind schemes in laminar flow

simulation and well-resolved direct simulation of turbulent flow over years.
4. Dynamic error analysis

The static error analysis in Section 3 provides a useful information about estimating the amounts of
error produced by various finite difference schemes. However, the spectral changes in time according to

numerical schemes cannot be taken into account by the static error analysis. Therefore, in this section, we

present a dynamic analysis on the discretization errors by simulating the decaying isotropic turbulence

investigated by Comte-Bellot and Corrsin [36] (denoted as CBC hereinafter). They measured the energy
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spectra at three locations in grid turbulence. Using the Taylor hypothesis, the spectra are converted to those

at tU0=M ¼ 42, 98 and 171, where M (¼ 5.08 cm) and U0 (¼ 10 m/s) are the grid size and free-stream

velocity, respectively. The Taylor micro-scale Reynolds numbers, Rek, are in the range of 71.6–60.6. The
discretization errors are now estimated from the numerical solutions, not from the error terms.

The initial field is generated iteratively, as described in Section 3, to match the measured spectrum at

tU0=M ¼ 42. A pseudo-spectral code is used for the simulation by adopting MWNs to mimic the physical

space behavior of the finite difference schemes. All the simulations in this section are performed with a 323

grid in the computational box of ð11MÞ3, but in Section 4.4, a 643 grid is used to see the effect of the

resolution. A third-order Runge–Kutta scheme and the Crank–Nicolson scheme are used for temporal

integration of nonlinear and diffusion terms, respectively.

For the SGS model, both the spectral eddy viscosity model (SPEVM) [37] and dynamic Smagorinsky
model (DSM) [2,38] are used, which are described in Appendix A.
4.1. Reference LES solution

Fig. 8 shows the time evolution of EðkÞ and the decay of the resolved kinetic energy for dealiased spectral

method (SPDA) with and without SGS model. The results from both SGS models agree very well with the

experimental data of CBC. On the other hand, the simulation without SGS model results in large energy

accumulation at high wavenumbers and hence fails to reproduce the correct decay rate of the kinetic en-
ergy. This result is natural because the resolved dissipation rate, � ¼ 2m

R kc
0
k2EðkÞ dk, at tU0=M ¼ 42 is only

2.5% of the total dissipation rate and thus most dissipation should be supplied by the SGS dissipation.

Hence, we define the result from SPDA with SPEVM as a reference solution to study the dynamic errors.

All the simulations in the following subsections adopt SPEVM because of its efficiency in the Fourier space.

One could obtain essentially the same results from SM (or DSM) at least for this isotropic turbulence.

4.2. Effect of discretization error

Figs. 9(a)–(d) show the energy spectra at tU0=M ¼ 98 for SP (spectral), COM4, CUDZ and CUD3 with

and without aliasing error. Three different forms of nonlinear term are considered for central schemes (Figs.

9(a)–(c)) and the divergence form is considered for upwind schemes (Fig. 9(d)). The comparison between
Fig. 8. Results from simulation of the decaying isotropic turbulence with and without SGS model. Computations are performed with

the dealiased spectral method: (a) time evolution of energy spectra; (b) decay of the resolved kinetic energy.
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results from SPDA and dealiased simulation with finite difference schemes reveals the effect of the finite-

differencing error, and the comparison between aliased and dealiased simulations shows the effect of the

aliasing error.

Although the finite-differencing errors are not same for different forms of nonlinear term (see Appendix

B and [9]), this fact is often overlooked. From Fig. 9, it is manifest that the skew-symmetric form minimizes

both the finite-differencing and aliasing errors. Thus, the success of COM4 in the skew-symmetric form

comes from reduced finite-differencing error as well as reduced aliasing error. It is interesting to observe

that COM4 in the advective form produces largest finite-differencing and aliasing errors. Therefore, no
evidence is found from the present analysis and simulation that support the result from Fedoiun et al. [7].

On the other hand, the aliasing errors from SP in the divergence and advective forms are larger than

those from COM4, whereas the spectrum from SP in the skew-symmetric form is nearly the same as that

from SPDA, which suggests the use of the pseudo-spectral method in the skew-symmetric form rather than

using an expensive zero padding technique in other forms of nonlinear term.

Parallel to error-minimizing characteristics, the superiority of the skew-symmetric form over other forms

lies in the fact that the kinetic energy is conserved in the skew-symmetric form even in the presence of the

finite-differencing and aliasing errors [9]. In general, such a conservation property is crucial for the stability
of simulations that need long time integration. This issue will be addressed in the physical space simulation

in Section 5.
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Contrary to the static analysis, the aliasing error is smaller than the finite-differencing error and con-

taminates only high wavenumber regions. This is true especially for upwind schemes. For CUDZ and

CUD3 (Fig. 9(d)), the dissipative finite-differencing error is the dominant source of the discretization error.
Furthermore, the aliasing error of CUD3 is smaller than that of CUDZ, indicating that the aliasing error

decreases as the numerical dissipation increases, which is opposite to the result obtained from the static

analysis.

Possible explanations for this opposite result on the aliasing error may be given in the below. First, the

interaction between the aliasing error and dissipative finite-differencing error should be considered for

upwind schemes. Unlike the static analysis where the energy spectrum is fixed as a prescribed one, the

energy spectrum continuously changes in time and is contaminated by the finite-differencing error leading

to fall-off at high wavenumbers. For highly dissipative schemes, the finite-differencing error may leave no
energy at high wavenumbers to be aliased. This mechanism explains why the aliasing error decreases as the

imaginary part of MWN increases. Second, the discrepancy between the static and dynamic analyses for

both central and upwind schemes can be explained in terms of the self-adjusting mechanism of SGS model

by which the effect of the discretization error is reduced. This feature will be explained in the following

section.

It is worth noting that the imaginary part of MWN is not the only source of numerical dissipation for

upwind schemes. Appendix C deals with flux vector splitting and shock-capturing schemes as additional

sources of numerical dissipation. However, it is shown by performing MILES with the present upwind
schemes that such an excessive dissipation does not remove the necessity of SGS model in LES (see Ap-

pendix D).

4.3. Dynamic interaction between the numerical error and SGS force

We conjecture that the SGS models considered in this study have a self-adjusting mechanism in which

the numerical error is considerably reduced. This may be illustrated by performing an �ideal LES� where the
SGS force is independently given as that obtained from LES with SPDA. Therefore, the difference between
the actual LES and the ideal LES may show the effect of dynamic interaction between the numerical error

and SGS model.
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Fig. 10 shows the time evolutions of the energy spectra from the ideal and actual LES with COM4-div

and CUDZ. For both difference schemes, it is evident that the actual LES shows better agreement with the

experiment. For COM4, the effect of the aliasing error is reduced by the actual LES as the aliasing error
leads to increase in the eddy viscosity at high wavenumbers through the increase in EðkcÞ. Similarly, for

CUDZ, the effect of the dissipative finite-differencing error is reduced by the actual LES because the dis-

sipative finite-differencing error reduces the eddy viscosity through the decrease in EðkcÞ. Note that a similar

mechanism also holds for DSM [39] through the dynamic constant(s).

Therefore, in actual simulations the effect of numerical error is always smaller than what is expected

from the static analysis due to the self-adjusting mechanism of SGS models.
4.4. Optimal upwind scheme

As shown in Section 4.2, the aliasing error decreases as the numerical dissipation increases. This suggests

that there may exist some range of a for CUD of minimizing the total discretization error. In this sub-

section, such an optimal a, i.e. an optimal amount of numerical dissipation, is sought from the temporal

evolution of numerical errors.

We define the dynamic finite-differencing, aliasing and total errors as the differences between the solu-

tions with and without discretization errors normalized by the total kinetic energy:

�FDðtÞ ¼
R km
0

ESPDAðk; tÞ � EDAðk; tÞj jdkR km
0

ESPDAðk; tÞ dk
;

�aliasðtÞ ¼
R km
0

EDAðk; tÞ � Ealiasðk; tÞ
�� ��dkR km

0
ESPDAðk; tÞ dk

;

�totalðtÞ ¼
R km
0

ESPDAðk; tÞ � Ealiasðk; tÞ
�� ��dkR km

0
ESPDAðk; tÞ dk

;

ð31Þ

where the superscript �SPDA� means the dealiased spectral simulation, �DA� denotes the dealiased simu-

lation with the finite difference scheme and �alias� denotes the aliased simulation with the finite difference

scheme.

Figs. 11(a) and (b) show the time evolutions of the dynamic finite-differencing and aliasing errors for a

family of compact upwind scheme with various a. The range of a considered is from 0 to 0.25 that cor-
respond to COM4-div and CUDZ, respectively. The results from COM4-sk are also plotted for compar-

ison. The dynamic finite-differencing error increases as a increases, although the trend is not monotonic,

whereas the dynamic aliasing error decreases monotonically with increasing a. The aliasing error for

COM4-sk is smaller than that for CUDZ (a ¼ 0:25).
Fig. 12(a) shows the dynamic errors as a function of a at three nondimensional times, where the existence

of the optimal amount of dissipation is clearly observed as a consequence of different behaviors of the finite-

differencing and aliasing errors. The increase in the finite-differencing error is more dominant characteristics

of upwind scheme than the decrease in the aliasing error. It is also interesting to note that the finite-dif-
ferencing error is even larger than the total error except for small a: the finite-differencing error significantly

decreases the kinetic energy, while the aliasing error increases it. Thus, their net effect (total discretization

error) is smaller than the finite-differencing error alone.

In Fig. 12(a), a ¼ 0:07 is an optimum value. Hence, we call CUD with a ¼ 0:07 as the �optimal CUD�. As

expected, the result from optimal CUD shows an excellent agreement with SPDA and experiment (Fig. 13).

Note that the optimal CUD provides a very small dissipation as comared to other popular upwind schemes,



Fig. 12. Dynamic finite-differencing, aliasing and total errors as a function of a: (a) 323 simulation; (b) 643 simulation.

Fig. 11. Time evolutions of the dynamic errors for a family of compact upwind scheme: (a) dynamic finite-differencing error; (b)

dynamic aliasing error.
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which illustrates the failure of conventional upwind schemes because the advantage of reducing the aliasing
error by upwind schemes is completely masked by the increased finite-differencing error.

To investigate the effect of grid resolution on the optimal dissipation, the dynamic errors are evaluated

from the simulations with 643 grids (Fig. 12(b)). The optimal a is nearly unchanged with the increase in the

resolution. This result is encouraging but it may be simply due to the nature of the isotropic turbulence, or

the strong scale-similarity of the inertial range dynamics. In general, there is no reason to believe that the

optimal amount of dissipation computed from LES of the isotropic turbulence should be universal for

other flows. Therefore, the existence and universality of the optimal CUD will be investigated through LES

in the physical space in the following section.
5. Simulations in the physical space

In this section, LES of a fully developed channel flow at Re ¼ 23000 and of flow past a circular cylinder

at Re ¼ 3900 are performed in the physical space to investigate the issues addressed in the spectral analysis.
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5.1. SGS model and discretization methods

As the governing equation, the compressible formulations of filtered conservation equations for mass,

momentum and energy are adopted. For the SGS closure, the compressible variant of DSM [3] is adopted

both for momentum and energy equations with Lilly�s modification [38]. As a test filter, a top hat filter is
used in homogeneous direction(s) with Simpson�s 1/3 rule to make the effective ratio of test to grid-filter

width be 2.

For the spatial discretization, COM4 and CUD are considered. The conventional temporal discretiza-

tion schemes for compact differencing such as third-/fourth-order Runge–Kutta schemes introduce a severe

temporal stability constraint for wall-bounded viscous flows. To overcome this constraint, we adopt an

implicit second-order accurate time integration method [40] based on the scheme due to Ekaterinaris [41],

which is an extended version of the Beam–Warming scheme [42] with diagonalization [43] for compact

difference schemes. The scheme used here is briefly introduced in Appendix E.
Although the temporal discretization method used in this study is Cauchy stable for linear problems,

COM4 is ready to amplify various sources of instability such as the aliasing error, 2-D mode (odd–even

decoupling), boundary condition and mesh nonuniformity. To damp out such numerical instabilities, a

filtering technique is applied to the conservative variables using an eighth-order compact filter [30,44]:

aff i�1 þ f i þ aff iþ1 ¼
X4
n¼0

an
2

fiþnð þ fi�nÞ; ð32Þ

where af is a free parameter in the range of 0 < jaf j6 0:5. The effect of filter decreases as af approaches 0.5
and af ¼ 0:5 leads to no filtering. The coefficients an are uniquely determined by the Taylor series expansion

[44]: a0 ¼ ð93þ 70afÞ=128, a1 ¼ ð7þ 18afÞ=16, a2 ¼ ð�7þ 14afÞ=32, a3 ¼ ð1� 2afÞ=16 and a4 ¼
ð�1þ 2afÞ=128.

To minimize the effect of filter, af is set to be as close as 0.5 (a typical value of af used in this study is

0.495) and filtering is performed at every 20–40 computational time steps. For all numerical simulations

with COM4, we confirmed through an intensive parametric study that filtering does not affect the resolved
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scales and only suppresses modes at very high wavenumbers near 2-D mode. On the other hand, upwind

schemes do not need such filtering due to their dissipative characteristics.

5.2. Fully developed channel flow at Re ¼ 23000

We consider a fully developed channel flow at Re ¼ 23000 based on the centerline velocity Uc and the

channel half-width d. Kravchenko and Moin [9] (KM97) conducted LES of the same flow with various

finite difference schemes from CD2 to SPDA by replacing wavenumbers with MWNs in a pseudo-spectral/

B-spline code.

For all cases, we adopt the same grid resolution and distribution with those of KM97. A grid of

48� 64� 48 is used in the streamwise, wall-normal, and spanwise directions, respectively, in a computa-
tional domain of 2pd� 2d� pd=2, which results in Dxþ ¼ Dxus=m � 130, Dyþmin � 0:5, Dyþmax � 110 and

Dzþ � 33. Here us is the wall shear velocity. Free-stream Mach number M1 ¼ 0:2 and the Prandtl number

Pr ¼ 0:7 are chosen in order to make a quasi-incompressible flow condition, and the molecular viscosity is

assumed to be constant.

Various simulations are performed with different discretization schemes with and without SGS model.

The stability characteristics of these simulations are summarized in Table 1. The computation with COM4

in divergence form are numerically unstable possibly due to the violation of the kinetic energy conservation

[9]. This explanation, however, is inappropriate for the present compressible simulation, because the kinetic
energy is exchanged with the internal energy and is not conserved. Nevertheless, the conclusions drawn on

the incompressible simulation are also valid for the compressible one since there exists an analogue to the

kinetic energy conservation: the simulation should satisfy the balance of the turbulent kinetic energy [6] in

the limit of no diffusion and without mean flowZ
V
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ot
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2
qu00i u

00
i
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dVþ

Z
V

u00i
op
oxi

dV ¼ 0; ð33Þ

where V is the computational domain and u00i ¼ ui � eui is the fluctuation from the Favre averaging,eui ¼ qui=�q. The skew-symmetric form satisfies (33) because the summation by part holds numerically even

in the presence of the aliasing and finite-differencing errors, but the divergence and advective forms do not

satisfy (33) [6,9] (as the product rule of differentiation does not hold for the finite difference schemes). The

present simulation with the skew-symmetric form is stable regardless of SGS model, which complies well
with the argument given above. The simulation with the advective form is stable only with SGS model,

indicating that this form is also affected by the instability due to the violation of (33). Since the conservation

property of (33) is independent of discretization errors, in actual simulation, the advantage of the skew-

symmetric form comes from both error-minimizing and good conservation characteristics.
Table 1

Simulations of turbulent channel flow with various discretization schemes

Scheme Nonlinear terms SGS model Stability

COM4 Divergence s "
COM4 Skew-symmetric s, � d

COM4 Advective s (�) d (")
CUDZ Divergence s, � #
CUD3 Divergence s, � #
CUD (a ¼ 0:008) Divergence s, � d

WENO3 Divergence s, � #

d, stable; ", numerically unstable; #, flow laminarizes.
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On the other hand, CUDZ, CUD3 and WENO3 laminarize the flow. Among them, the simulation with

WENO3 shows the fastest laminarization, which is consistent with the result by Meinke et al. [26] and the

dynamic analysis in Appendix C.
The optimal CUD, or CUD with a ¼ 0:07 obtained from the isotropic turbulence is tested for this flow.

Unfortunately, the scheme is still dissipative and finally laminarizes the flow. Through a parametric study

on a, we find that there exists a narrow range of a near a � 0:01 that sustains turbulence, and a ¼ 0:008 is

the lowest value that does not lead to numerical instability. Therefore, the existence of the optimal upwind

scheme that minimizes the total discretization error is again confirmed for this flow, although the amount of

optimal dissipation (i.e. values of a) is far from being universal.

It is notable from Table 1 that the SGS model does not affect the stability of simulation except for the

case of COM4 in the advective form, which is an indirect evidence of the discretization errors being larger
than the SGS force for the present flow.

Figs. 14(a) and (b) show the mean streamwise velocity and resolved RMS velocity fluctuations for

various schemes listed in Table 1. Also shown are those from SPDA (KM97) and experimental result of

Wei and Willmarth [45]. The result from CUDZ is also shown for the purpose of comparison, although it is

under laminarization. The mean velocity and RMS velocity fluctuations from COM4-sk with SGS model

show an excellent agreement with those from SPDA and the experimental data. The results with COM4-sk

without SGS model underestimates the mean velocity and overestimates the RMS velocity fluctuations,

which is consistent with KM97 and other LES results without SGS model.
The RMS velocity fluctuations predicted from COM4-adv show a reasonable agreement with those from

SPDA, but COM4-adv shows a non-negligible deviation from the log law in the mean velocity profile. The

superiority of the skew-symmetric form over the advective form is again confirmed in the physical space

simulation.

The result from CUDZ shows excessive numerical dissipation by overpredicting the mean velocity (when

plotted in wall unit) and underpredicting the velocity fluctuations. The excessive dissipation seems to be

nearly removed by the optimal CUD (a ¼ 0:008), predicting a very similar result to that from COM4-adv

for both the mean velocity and velocity fluctuations. However, the result from optimal CUD is not as
excellent as that from COM4-sk. This trend is analogous to that shown in the dynamic analysis in Section 4.

The spectral aspects of these schemes are demonstrated by the one-dimensional energy spectra in Fig. 15.

The spectra from COM4-sk with SGS model agree well with those from SPDA, whereas COM4-sk without
Fig. 14. Statistics for a fully developed channel flow at Re ¼ 23000: (a) mean streamwise velocity; (b) RMS velocity fluctuations.



100 101 102

kx

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

COM4-sk
COM4-sk (w/o SGS model)
CUDZ
optimal CUD
spectral LES [9]

Eww

Euu

Evv

100 101 102

kz

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

COM4-sk
COM4-sk (w/o SGS model)
CUDZ
optimal CUD
spectral LES [9]

Euu

Evv

Eww

(a) (b)

Fig. 15. One-dimensional energy spectra at yþ � 15 for a fully developed channel flow: (a) streamwise wavenumber; (b) spanwise

wavenumber.

N. Park et al. / Journal of Computational Physics 198 (2004) 580–616 601
SGS model overpredicts the energy. The optimal CUD slightly underpredicts the energy, but CUDZ sig-

nificantly damps out the energy at all wavenumbers.

The interaction between the SGS model and the discretization error is estimated by the ratio of the SGS

dissipation to total dissipation in Fig. 16, where the results from SPDA and CD2 are taken from KM97.
Invoking modified wavenumber argument, the SGS dissipations from COM4-sk and COM4-adv seem to be

reasonable. However, due to the numerical dissipation, the SGS dissipation from CUDZ is even smaller

that that of CD2 and the qualitative behavior is very different from others. Away from the wall the SGS
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dissipation from optimal CUD agrees well with those from COM4-sk and COM4-adv, but is smaller near

the wall. Thus, the SGS dissipation is replaced by the numerical dissipation in this region.

Fig. 17 shows the instantaneous vortical structures using the vortex identification method (k2-method)
[46]. The elongated structures with spanwise spacings are clearly shown in the case of COM4-sk with SGS

model. The estimated steak spacing for this case is roughly 100 in wall units. Without SGS model, the

vortical structures become stronger due to no dissipation at unresolved wavenumbers. Fig. 17(c) shows that

some streaks are missing in the field from optimal CUD due to the numerical dissipation. However, tur-

bulence seems to survive in this flow when compared with the field from CUDZ where turbulence decays as

times goes due to the excessive dissipation.

5.3. Flow past a circular cylinder at Re ¼ 3900

We consider the flow past a circular cylinder at Re ¼ 3900 based on the freestream velocity U1 and the

diameter D. This flow has been one of the most challenging problems for LES that has been tackled with

various numerical schemes including CD2 [21,22], QUICK [22], UD7 [19] and B-spline method [47].

Fig. 18 shows the distribution of the grid adopted in this study. An O-type grid with 144� 201� 48

points in the azimuthal, radial and spanwise directions is used in a computational domain of

2p� 40D� pD, respectively. The number of total grid points is nearly same as that used for the Case 2 in

[47]. The grid points are clustered near the cylinder surface in the radial direction to retain a nearly uniform
grid distribution in 2 < x=D < 12 and to resolve surface boundary layer. This non-uniform grid distribution

is found to be main source of instability for non-dissipative schemes [48]. For COM4, this instability is

removed by the eighth-order compact filter with af ¼ 0:495 (Eq. (32)) per every 20th time step.

Some flow parameters obtained from the computations are summarized in Table 2, together with those

from the previous LES [19,21,22,47] and experiments [49–51]. It is interesting to note that the Strouhal

number and drag coefficient (CD) can be predicted quite well regardless of the discretization scheme and

SGS model used. On the other hand, other parameters such as the base-pressure coefficient (�Cpb ), re-
Fig. 17. Instantaneous vortical structures in a fully developed channel flow.
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circulation bubble length (Lrec) and minimum mean streamwise velocity along the centerline (Umin) seem to

be affected by numerical scheme. For example, CUDZ underpredicts �Cpb
and Umin and overpredicts Lrec.

Similar trends were also observed from the results using UD7 [19] and a QUICK scheme [22] using SM.

In Table 2, we presented the results only from COM4 in the skew-symmetric form and CUDZ. We

confirmed that the results from COM4 in the skew-symmetric and divergence forms are nearly identical to

each other, indicating that the form of nonlinear term has negligible effects for this flow. This may be due to

relatively higher resolution and lower Reynolds number than other flows considered in this paper. Since
COM4 in the divergence form predicts the flow very well, the optimal CUD does not exist, i.e. a ¼ 0 is the

optimal value for this flow. Note that the condition for the existence of an optimal a is that the aliasing and

finite-differencing errors should be in comparable magnitude when a ¼ 0 as shown in Fig. 12. However, we

could not find any sign of the aliasing error such as the pile-up of energy at high wavenumbers from the

inspection of the energy spectra at several locations. Therefore, the condition for optimal CUD is not

satisfied in the present flow because the finite-differencing error dominates the total discretization error.
185 O-type grid for flow past a cylinder5 Here every other grid is plotted in the radial direction for clarity.2

for the flow over a circular cylinder atRe¼ 3900

ec
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Fig. 19 shows the instantaneous fields showing separating shear layer and Karman vortex street. The
vortical structures from COM4-sk without SGS model are stronger than but similar to those with SGS

model. Unlike the result from COM4-sk, CUDZ dissipates small-scale structures at x=D > 3. Also the

length of shear layer from CUDZ is longer than that by COM4-sk, evidently showing the delay of tran-

sition from CUDZ, which may be a possible cause of the discrepancies in �Cpb
, Umin and Lrec. Nevertheless,

this excessive dissipation by CUDZ is unexpected because the resolution near the cylinder surface is quite

sufficient. We found that Van Leer FVS adopted for the present case is responsible for this excessive

dissipation in the near-wake region, because the flux does not vanish even for zero velocity due to eigen-

value smoothing. It is a well-known problem of this FVS scheme. Nevertheless, there is no alternative but
using Van Leer FVS to avoid an unphysical oscillation near the stagnation point. On the other hand, the

dissipation at x=D > 3 is purely due to the finite-differencing error.

Figs. 20(a) and (b) show the pressure coefficient and mean streamwise velocity along the centerline of the

wake (y ¼ 0), respectively. Both the results from COM4-sk with and without SGS model show good

agreement with experimental data. Discrepancies observed in the mean streamwise velocity among the

numerical and experimental results may result from an earlier transition occurred in the experiment due to
Fig. 20. Statistics for the flow past a circular cylinder at Re ¼ 3900: (a) pressure coefficient along the cylinder surface; (b) mean

streamwise velocity along the centerline.

shear layer and Karman vortex street in the flow over a circular cylinder at 3900. Shown are 16 contours ofthe instantaneous vorticity magnitude fromxD=U



Fig. 21. Ratio of the SGS dissipation to total dissipation. Shown are 12 contours from 0.02 to 0.3: (a) COM4-sk; (b) CUDZ.
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background turbulence [47]. Due to the delayed shear layer transition, CUDZ does not predict the base

pressure and the mean velocity correctly as shown in Fig. 20(b).

Figs. 21(a) and (b) show the ratio of the SGS dissipation to total dissipation in the near-wake region for

COM4-sk and CUDZ, respectively. It is clear that the SGS dissipations from both COM4-sk and CUDZ
are small since they do not exceed 30% of total dissipation and are below 15% in the most region. The SGS

dissipation from COM4-sk is larger than that from CUDZ, which is consistent with the result from LES of

the fully developed channel flow. However, the difference in the results from these two schemes is much

smaller for the flow past a circular cylinder.

The one-dimensional frequency spectra at x=D ¼ 7:0 and y=D ¼ 0 are shown in Fig. 22, together with

those from Ong and Wallace [51] and BM94. The spectrum from COM4-sk with SGS model agrees very

well with the experimental data [51] and that from Kravchenko and Moin [47] (not shown here) up to the

grid cut-off frequency. The spectrum from COM4-sk without SGS model shows also good agreement.
However, the spectrum from CUDZ shows a rapid fall-off at high frequencies but is still much better than
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that from UD7 (BM94), although UD7 and CUDZ have nearly the same MWNs as shown in Fig. 1. This

result may be explained in terms of the resolution. BW94 used 136 grid points in the radial direction (201

grid points in the present study) and used highly stretched grids along the radial direction, which can be an
additional source of numerical dissipation.
6. Conclusions

In this paper, the suitability of high-order accurate, centered and upwind-biased compact difference

schemes for large eddy simulation was evaluated by the static and dynamic analyses. The static error

analysis indicated that both the finite-differencing and aliasing errors increase as the amount of numerical
dissipation increases. On the other hand, the dynamic error analysis led to nearly opposite conclusions in

that the aliasing error decreases as the numerical dissipation increases and the finite-differencing error

overweighs the aliasing error. From the comparison of both analyses, we concluded that the discretization

errors are properly characterized only by the dynamic analysis.

For the decaying isotropic turbulence, we showed the existence of optimal amount of dissipation that

minimizes total discretization error, when compact upwind schemes were used. However, the amount of

optimal dissipation was very small, clearly explaining the failure of conventional upwind schemes in LES. It

was also shown that upwind schemes considered in this study satisfy none of the conditions C1 and C2 ex-
plained in Section 1; i.e. the dissipative finite-differencing error of upwind schemes is larger than the SGS

dissipation, and the spectral behavior of the finite-differencing error is not similar to that of the SGS dissi-

pation. In addition, a classical issue on the formulation of nonlinear term was revisited to show that the skew-

symmetric form minimizes both the finite-differencing and aliasing errors among all the possible forms.

Finally, LES of turbulent channel flow at Re ¼ 23000 and flow over a circular cylinder at Re ¼ 3900 were

performed. The results showed that conventional compact upwind schemes are not suitable for LES,

whereas the fourth-order compact centered scheme is a good candidate for LES provided that a proper

treatment of nonlinear term is performed. The existence of optimal upwind scheme was also verified in the
physical space simulation, although the amount of optimal dissipation was significantly dependent on the

flow type.
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Appendix A. Subgrid-scale modelling errors

In this appendix, we estimate the SGS modeling error as compared to the true SGS force. For this

purpose, three different SGS models are considered here.

• Spectral eddy viscosity model (SPEVM) [37].

In the Fourier space, SPEVM assumes the SGS force as

F >
i ðkÞ ¼ PðikjŝijðkÞÞ ¼ �mtðkjkcÞk2ûiðkÞ; ðA:1Þ

where kc is the cut-off wavenumber, and the spectral eddy viscosity mt is given by
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mtðkjkcÞ ¼ mtþðkjkcÞ
Eðkc; tÞ

kc


 �1=2

; ðA:2Þ
mtþðkjkcÞ ¼ 0:267 1
�

þ 34:5e�3:03ðkc=kÞ
�
: ðA:3Þ

• Fixed-coefficient Smagorinsky model (SM) and dynamic Smagorinsky model (DSM) [2,38].

The Smagorinsky model assumes the SGS stress as

sij �
1

3
skkdij ¼ �2CsD

2jSjSij; ðA:4Þ

where jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sij�Sij

q
, and skk is not modeled in incompressible flow but absorbed in the pressure term. The

Smagorinsky constant Cs is a global constant in space and time for SM. In DSM [2,38], it is determined by

CsD
2 ¼ � 1

2

LijMij

 �
MijMij

 � ; ðA:5Þ

where h i denotes the average over homogeneous direction(s), and

Lij ¼ gui uj � eui euj ; ðA:6Þ
Mij ¼
~D
D

 !2 fjSjfSij � gjSjSij : ðA:7Þ

The tilde denotes the test filtering with a filter width ~D wider than that of grid filter D. Usually ~D=D ¼ 2 is

taken.

Fig. 23 shows PSDs of SGS forces computed from SPEVM, SM and DSM, toghether with PSD of

discrete true SGS force described in Section 3.1.3. For SM, Cs ¼ 0:01 is used, and Cs is dynamically de-

termined to be about 0:0072 in DSM.
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PSD from SPEVM overestimates the SGS force at all wavenumbers, which means that excessive SGS

dissipation would be supplied by the model. PSDs from SM and DSM show better agreements with true

SGS force, but overestimate the SGS force at low wavenumbers and underestimate it at high wavenumbers.
This is not surprising because previous a priori tests [34,52] reported that the correlation between sij and
jSjSij is very low.

PSDs of modeled SGS forces provide a new insight regarding the effect of models on the energy transfer

between various scales of turbulent motion. For example, when SM is used, one may explain an excessive

dissipation in mid-wavenumbers and pile-up near cut-off wavenumber observed in LES of isotropic tur-

bulence (see, e.g. [53]).

In spite of such a non-negligible SGS modelling error, we do not seriously consider it in this paper

because only the discretization error matters as far as an LES result from a modeled SGS force and exact
discretization schemes is regarded as an exact solution. In this respect, the SGS modelling error would play

only a passive role in determining discretization errors. Moreover, the velocity-stress (or SGS dissipation)

correlation for the eddy viscosity model is remarkably high [52,54], so that the model complies reasonably

well with the necessary conditions [54] to accurately reproduce the energy spectrum of the resolved velocity

in grid turbulence.
Appendix B. One-dimensional analysis on the aliasing error

To further investigate the effect of upwinding on the aliasing error, one-dimensional analysis is per-
formed with a simple nonlinear term as considered in [9]. Let us define scalar functions uðxÞ and vðxÞ on
06 x6 2p and consider the numerical approximations of N � duv=dx. u and v are assumed to be positive

and have the Fourier coefficients ûðkÞ ¼ v̂ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffi
EðkÞ

p
, where EðkÞ is the Von Karman spectrum defined by

(27) with kp ¼ 1. If ui and vi are the projections of u and v onto discrete and uniform grid points xi
ði ¼ 0; 1; . . . ;MÞ, possible candidates for the discrete evaluation of N are

N1 ¼
duv
dx

;

N2 ¼ u
dv
dx

þ v
du
dx

;

N3 ¼
1

2
ðN1 þ N2Þ:

ðB:1Þ

Here, N1, N2, and N3 correspond to one-dimensional analogues of the divergence, advective and skew-

symmetric forms, respectively, as defined in (3). By Fourier transforming these terms, we get

N̂1ðkÞ ¼ ik0ðkÞ
X

nþm¼k

ûðnÞv̂ðmÞ
 

þ
X

nþm¼k�M

ûðnÞv̂ðmÞ
!
;

N̂2ðkÞ ¼
X

nþm¼k

ûðnÞik0ðmÞv̂ðmÞ
�

þ ik0ðnÞûðnÞv̂ðmÞ
�

þ
X

nþm¼k�M

ûðnÞik0ðmÞv̂ðmÞ
�

þ ik0ðnÞûðnÞv̂ðmÞ
�
;

N̂3ðkÞ ¼
1

2
N̂1

�
þ N̂2

�
;

ðB:2Þ

where the second terms in N̂1 and N̂2 are the aliasing errors. If we denote these terms as Ealias
i ðkÞ, PSD of the

aliasing errors can be defined as Ealias
i ðkÞ ¼ ð2p=LÞEalias

i ðkÞ � Ealias�
i ðkÞ. As MWN of upwind scheme can be

represented as k0 ¼ kr þ iki (kr; ki 2 R), PSD of the aliasing error for the divergence form is
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Ealias
1 ðkÞ ¼ k2r

�
þ k2i

� X
nþm¼k�M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðnÞEðmÞ

p !2

: ðB:3Þ

From (B.3), it is manifest that the imaginary part of MWN increases PSD of the aliasing error. For

example, the aliasing error from UD5 is larger than that of CD6 at all wavenumbers because two schemes

have the same real part of MWN. The same conclusion holds for other pairs of upwind and central schemes

such as UD1 and CD2, or UD7 and CD8.

Fig. 24 shows PSDs of the aliasing errors of CUD3, CUDZ, COM4-div, COM4-sk and aliased spectral

method in the divergence form with M ¼ 48. As the consequence of the definition given by (B.3), the

aliasing error of CUD3 is even larger than that of the aliased spectral method. Again, except near the cut-

off wavenumber, the skew-symmetric form leads to the lowest aliasing error because the aliasing errors of
N̂1 and N̂2 have opposite signs [7,9].
Appendix C. Additional sources of numerical dissipation

The characteristic of a central difference scheme is completely described with its modified wavenumber.

However, it is not the case for nonlinear upwind schemes whose MWN cannot be defined, and even for

linear upwind scheme due to flux vector splitting. In this appendix, the effect of FVS and shock-capturing

scheme on the numerical dissipation is investigated.

First, we consider a popular flux splitting scheme, global Lax–Friedrichs splitting (GLF-FVS) [13] de-
fined as

f �ðuÞ ¼ 1

2
ðf ðuÞ � jcjuÞ; ðC:1Þ

where c is usually taken as the largest eigenvalue of the function f ðuÞ over the entire domain. Let us in-

troduce MWNs for the first and second derivatives, k0 ¼ kr þ iki and k00, and consider the Burgers equation

with f ðuÞ ¼ ð1=2Þu2 in the Fourier space
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o

ot



þ mk00

�
ûk ¼ � 1

2
ik0 f̂k
�

þ jcjûk
�
� 1

2
ik0� f̂k
�

� jcjûk
�
: ðC:2Þ

Substituting k0 ¼ kr þ iki into (C.2) leads to

o

ot



þ mk00 � jcjki

�
ûk ¼ �ikrf̂k ¼ � i

2
kr

X
pþq¼k

ûðpÞûðqÞ
 

þ
X

pþq¼k�M

ûðpÞûðqÞ
!
; ðC:3Þ

where M is the number of grid points. As is clear in (C.3), an additional linear finite-differencing error,

�jcjkiûk, is introduced due to GLF-FVS. Note that ki 6 0 for all wavenumbers and jcj 	 Oð1Þ for a properly
nondimensionalized system. Therefore, �jcjki 
 mk00 except for very low Reynolds number flows. This

implies that the accuracy of high-order upwind schemes can be considerably masked by the false diffusion

due to FVS.

The failure of GLF-FVS comes from the fact that the splitted nonlinear flux produces an additional

linear term which causes the monotonic decay of ûk in time with the decay rate of �jcjki. On the other hand,

other flux splitting schemes such as LLF, Steger–Warming [55] and Van Leer splitting [31] do not have such
a problem as they let nonlinear terms be nonlinear after splitting. However, Steger–Warming and Van Leer

FVS suffer from oscillations near stagnation/sonic points or excessive dissipation in the boundary layer as

addressed in Section 5.3. Roe�s flux-difference splitting [56] and AUSM [29] are widely used as alternatives,

but they are not considered in the present study because CUD cannot be implemented with them as they

require flux reconstruction (interpolation) schemes.

To see the effect of FVS on the solution of the Navier–Stokes equation, we revisit both the static and

dynamic error analyses. Fig. 25(a) shows PSDs of the finite-differencing error for LLF-FVS and GLF-FVS.

The finite-differencing error from GLF-FVS is an order of magnitude larger at all wavenumbers than that
from LLF-FVS. Fig. 25(b) shows the results from simulation of CBC-isotropic turbulence using both

splitting schemes. CUDZ with GLF-FVS shows a highly dissipative nature at high wavenumbers and

produces excessive energy at intermediate wavenumbers. A similar trend was observed from the QUICK

scheme [57]. From the present results, it is clear that the way of splitting the nonlinear flux is as important

as the difference scheme itself, and the use of linear splitting schemes such as GLF-FVS should be avoided

in LES.
Fig. 25. Effect of flux vector splitting schemes on the finite-differencing error: (a) power spectral density of the finite-differencing error;

(b) energy spectra for decaying turbulence.
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Next, the effect of shock-capturing scheme is investigated. We consider a class of strongly conservative,

flux reconstruction scheme

df ðuÞ
dx

¼ 1

h
efiþ1=2

�
� efi�1=2

�
; ðC:4Þ

where efiþ1=2 denotes the numerical flux at the staggered node (or the cell face), which can be decomposed asefiþ1=2 ¼ ef þ
iþ1=2 þ ef �

iþ1=2. Therefore, the reconstruction of numerical fluxes is the core procedure for difference

schemes of this type. TVD-MUSCL [58] , ENO [59] and WENO [12,13] are popular reconstruction

schemes. Among them, we consider WENO3 [13]. WENO3 computes the numerical flux defined in (C.4) as

ef þ
iþ1=2 ¼ xþ

0

1

3
f þ
i�2



� 7
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þ
k

; k ¼ 0; 1; 2;

aþk ¼ Ck �
�

þ ISþ
k

��2
;

ðC:5Þ

where � ¼ 10�6 and Ck are optimal weights given by C0 ¼ 1=10, C1 ¼ 6=10 and C2 ¼ 3=10. ISk are

smoothness indicators that can be constructed in a number of ways. We adopt the following formulation

[13]:
Fig. 26. Effect of shock-capturing scheme on the numerical dissipation: (a) instantaneous xz contours on an x–y plane at tU0=M ¼ 64;

(b) energy spectra at tU0=M ¼ 64.
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Similarly, the numerical flux for negative part is given by the symmetric formulation to (C.5) and (C.6).

WENO3, like other flux reconstruction schemes, is nonlinear due to smoothness indicators. Thus, MWN

cannot be defined for such a scheme. However, for smooth flows where ISk approach zero, it is easy to show

that WENO3 reduces to UD5. However, it is questionable whether WENO3 treats marginally resolved

turbulent flows as �smooth� fields or not. For these flows, steep gradients of the flow variables inevitably

arise due to nonlinear interactions, which result in the increase in the smoothness indicator, ISk in (C.6).

Once high ISk is detected in one candidate stencil, WENO3 underestimates the contribution from this

stencil by scoring a lower weight to that than to other stencils. Therefore, such a nonlinear shock-capturing
scheme can be an additional source of numerical dissipation.

In order to verify this scenario, WENO3 is tested for CBC-isotropic turbulence. Because MWN cannot

be defined, the derivative is obtained in the physical space. Fig. 26(a) shows the instantaneous vorticity (xz)

contours from SPDA, UD5 and WENO3 on an x–y plane at tU0=M ¼ 64. The energy spectra at the same

time are plotted in Fig. 26(b). It is clear that a further dissipation is generated by WENO3 to the flow field

obtained from UD5. Therefore, shock-capturing schemes are not good candidates for LES since they

rapidly dissipate small scales.
Appendix D. Miles approach

In MILES, the dissipation error by upwind schemes is considered as a built-in SGS model and no explicit

SGS model is used. Furthermore, the viscous term in the Navier–Stokes equation is often neglected. In the

present MILES, we also neglect the viscous term.

Fig. 27 shows the energy spectra at tU0=M ¼ 98 and the decay of the resolved kinetic energy for LES and

MILES with CUD3 and WENO3. For CUD3, both LLF-FVS and GLF-FVS are considered. MILES
Fig. 27. Results from LES and MILES with CUD3 and WENO3: (a) energy spectra at tU0=M ¼ 98; (b) decay of the resolved kinetic

energy.
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provides stable solutions and roughly reproduces the decay of resolved kinetic energy. This result supports

the concept of MILES. However, among all the results shown in Fig. 27, the best agreement with the CBC

result is obtained from LES with CUD3-LLF and WENO3. The results from MILES with CUD3-LLF and
WENO3 indicate that an additional dissipation at intermediate wavenumbers is required to suppress ex-

cessive energy at these scales. Therefore, the condition C2 (numerical dissipation should be able to produce

the appropriate amount of SGS dissipation) is not satisfied by the present upwind schemes. The present

result is consistent with the conclusion of Garnier et al. [23], who performed MILES with shock-capturing

schemes such as ENO, TVD and Jameson schemes. On the other hand, the results from both LES and

MILES with CUD3-GLF are contaminated by the finite-differencing error due to GLF-FVS.
Appendix E. Implementation of compact difference schemes in the implicit time marching schemes

In this appendix, we present an implicit temporal discretization scheme combined with compact dif-

ference schemes, which is used in the physical space simulations in Section 5. For simplicity, we consider the

following two-dimensional Euler equation in the curvilinear coordinates (n; g):

oQ

ot
þ oEðQÞ

on
þ oFðQÞ

og
¼ 0; ðE:1Þ

whereQ ¼ J�1½q; qu; qv; e�T is the solution vector, J is the Jacobian of the coordinate transformation, and E

and F are flux vectors in curvilinear coordinates. For example, E ¼ J�1ðnxeþ nyfÞ ¼
J �1½qU ; quU þ nxp; qvU þ nyp; ðET þ pÞU � ntp�T, where e and f are flux vectors in the Cartesian coordi-
nates (x; yÞ and U is the contravariant velocity component U ¼ nxuþ nyvþ nt.

When we apply the Crank–Nicolson scheme to (E.1) for the physical time marching, a linearized semi-

discretized system is given by

DQp
i;j þ

Dt
2
onðADQÞpi;j þ

Dt
2
ogðBDQÞpi;j ¼ Rp

i;j; ðE:2Þ

where DQp ¼ Qpþ1 �Qp, Rp
i;j ¼ bi;j � DtðonEi;j þ ogFi;jÞ, bi;j ¼ Qn

i;j �Qp
i;j, E ¼ ð1=2ÞðEp þ EnÞ, and

F ¼ ð1=2ÞðFp þ FnÞ. The superscript p refers to the number of nonlinear subiterations used during time
advancement from time level n to the new level nþ 1 with the physical time step Dt in order to eliminate the

linearization error, and A ¼ oE=oQ and B ¼ oF=oQ are the Jacobian matrices.

The spatial accuracy of the scheme is determined by that of the differencing scheme adopted for the

terms in RHS of (E.2). This justifies the use of low-order schemes such as UD1 or CD2 for the implicit part

of such linearized systems to reduce the bandwidth of the global matrix (see, e.g. [20,44]). However, our

numerical experience indicates that such a method poses a severe stability problem when the explicit terms

are discretized with non-dissipative high-order schemes, which often leads to solution blow-up.

As an alternative, Ekaterinaris [41] proposed a new temporal implementation scheme that uses COM4
for both LHS and RHS of (E.2). We use a similar method to that in [41]. First, let us introduce a weighted

summation over adjacent grid points, which is defined for any / as

/½4�i ¼ /i�1 þ 4/i þ /iþ1: ðE:3Þ

With the approximate factorization and the weighted summation to (E.2) both in n- and g-directions, we
get

I

�
þ Dt

2
onA

�
I

�
þ Dt

2
ogB

�
DQp

½4�i;½4�j ¼ Rp
½4�i;½4�j: ðE:4Þ
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Solution of (E.4) is replaced by the sequential solutions of two equations

I
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þ Dt

2
onA

�
S½4�i;j ¼ Rp

½4�i;½4�j; ðE:5Þ
I

�
þ Dt

2
ogB

�
DQp

i;½4�j ¼ Si;j: ðE:6Þ

Applying COM4 to the derivatives in LHS of (E.5) and (E.6), they become

I
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where a fourth-order Pad�e approximation, e.g.,

onðASÞi�1 þ 4onðASÞi þ onðASÞiþ1 �
3

Dn
ðASÞiþ1

�
� ðASÞi�1

�
ðE:9Þ

is used in (E.7) and (E.8). Applying COM4 to RHS, Rp
½4�i;½4�j is simplified

Rp
½4�i;½4�j ¼ b½4�i;½4�j � Dt onE½4�i;½4�j

�
þ ogF½4�i;½4�j

�
¼ bi�1;j�1 þ 4bi;j�1 þ biþ1;j�1 þ 4 bi�1;j
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3Dt
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�
� Fj�1

�
½4�i; ðE:10Þ

where a Pad�e approximation as in (E.9) is also applied to onE½4�i and ogF½4�j. Therefore, with the weighted

summation (E.3) and Pad�e approximation, we obtain a fully discretized system (E.7), (E.8) and (E.10). Two

block-tridiagonal matrices, (E.7) and (E.8), are directly inverted by the Thomas algorithm.

The present scheme differs from that of Ekaterinaris [41] in that the weighted summations are applied to

both directions simultaneously, which enables us to use (E.10). By using (E.10), the computational cost is
saved up to 30% as no matrix inversion is required to get derivatives of the flux vectors with COM4.
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